Quizzma Latest Questions

Describe the given region in polar coordinates

Describe the given region in polar coordinates.

Describe the given region in polar coordinates




Leave an answer

Leave an answer

1 Answer

  1. To describe the given region in polar coordinates, we need to convert the boundaries of the region from Cartesian coordinates to polar coordinates.

    The region is bounded by:

    1. The straight lines x=4x = 4 and y=6y = 6
    2. The curve of the quarter circle with radius 6

    Converting boundaries to polar coordinates:

    1. Quarter circle with radius 6:
      • r=6r = 6
    2. Line x=4x = 4

      • In polar coordinates, x=rcosθ=4x = r \cos \theta = 4
      • Therefore, r=4cosθ=4secθr = \frac{4}{\cos \theta} = 4 \sec \theta
    3. Line y=6y = 6y=6:
      • In polar coordinates, y=rsinθ=6y = r \sin \theta = 6
      • Therefore, r=6sinθ=6cscθr = \frac{6}{\sin \theta} = 6 \csc \theta

    Describing the region in polar coordinates:

    The region is divided into two parts based on θ\thetaθ:

    • Lower portion:
      • 0θπ60 \leq \theta \leq \frac{\pi}{6}
      • 1r6secθ1 \leq r \leq 6 \sec \theta
    • Upper portion:
      • π6θπ2\frac{\pi}{6} \leq \theta \leq \frac{\pi}{2}
      • 1r6cscθ1 \leq r \leq 6 \csc \theta

    So, the full description in polar coordinates is:

    • Lower portion:
      • 0θπ60 \leq \theta \leq \frac{\pi}{6}
      • 1r6secθ1 \leq r \leq 6 \sec \theta
    • Upper portion:
      • π6θπ2\frac{\pi}{6} \leq \theta \leq \frac{\pi}{2}
      • 1r6cscθ1 \leq r \leq 6 \csc \theta

Related Questions