Quizzma Latest Questions

Describe the given region in polar coordinates

Describe the given region in polar coordinates.

Describe the given region in polar coordinates




Related Questions

Leave an answer

Leave an answer

1 Answer

  1. To describe the given region in polar coordinates, we need to convert the boundaries of the region from Cartesian coordinates to polar coordinates.

    The region is bounded by:

    1. The straight lines x=4x = 4 and y=6y = 6
    2. The curve of the quarter circle with radius 6

    Converting boundaries to polar coordinates:

    1. Quarter circle with radius 6:
      • r=6r = 6
    2. Line x=4x = 4

      • In polar coordinates, x=rcosθ=4x = r \cos \theta = 4
      • Therefore, r=4cosθ=4secθr = \frac{4}{\cos \theta} = 4 \sec \theta
    3. Line y=6y = 6y=6:
      • In polar coordinates, y=rsinθ=6y = r \sin \theta = 6
      • Therefore, r=6sinθ=6cscθr = \frac{6}{\sin \theta} = 6 \csc \theta

    Describing the region in polar coordinates:

    The region is divided into two parts based on θ\thetaθ:

    • Lower portion:
      • 0θπ60 \leq \theta \leq \frac{\pi}{6}
      • 1r6secθ1 \leq r \leq 6 \sec \theta
    • Upper portion:
      • π6θπ2\frac{\pi}{6} \leq \theta \leq \frac{\pi}{2}
      • 1r6cscθ1 \leq r \leq 6 \csc \theta

    So, the full description in polar coordinates is:

    • Lower portion:
      • 0θπ60 \leq \theta \leq \frac{\pi}{6}
      • 1r6secθ1 \leq r \leq 6 \sec \theta
    • Upper portion:
      • π6θπ2\frac{\pi}{6} \leq \theta \leq \frac{\pi}{2}
      • 1r6cscθ1 \leq r \leq 6 \csc \theta