Write the coordinates of the vertices after a dilation with a scale factor of 1/4, center at the origin.
A) E(-2, -2), F(2, -6), G(4, 2), H(0, 10)
B) E(-8, -8), F(8, -24), G(16, 8), H(0, 40)
C) E(-1, -2), F(1, -6), G(2, 2), H(0, 10)
D) E(-4, -4), F(4, -12), G(8, 4), H(0, 20)
Write the coordinates of the vertices after a dilation with a scale factor of 1/4, center at the origin.
Share
To find the coordinates of the vertices after a dilation with a scale factor of ( frac{1}{4} ) centered at the origin, you multiply each coordinate by ( frac{1}{4} ).
Let’s apply this to each vertex:
A)
– E(-2, -2) → ((-2 times frac{1}{4}, -2 times frac{1}{4}) = (-0.5, -0.5))
– F(2, -6) → ((2 times frac{1}{4}, -6 times frac{1}{4}) = (0.5, -1.5))
– G(4, 2) → ((4 times frac{1}{4}, 2 times frac{1}{4}) = (1, 0.5))
– H(0, 10) → ((0 times frac{1}{4}, 10 times frac{1}{4}) = (0, 2.5))
B)
– E(-8, -8) → ((-8 times frac{1}{4}, -8 times frac{1}{4}) = (-2, -2))
– F(8, -24) → ((8 times frac{1}{4}, -24 times