The equation for line $cc$c can be written as $y=-\frac{3}{7}x+4y\; =\; -\backslash frac\{3\}\{7\}x\; +\; 4$. Perpendicular to line $cc$ is line $dd$, which passes through the point $(2,4)(2,\; 4)$. What is the equation of line $dd$?

Write the equation in slope-intercept form. Write the numbers in the equation as simplified proper fractions, improper fractions, or integers.

# The equation for line c can be written as y=−7/3x+4

Share

## Solution:

$y-4=\frac{7}{3}(x-2)y\; \u2013\; 4\; =\; \backslash frac\{7\}\{3\}(x\; \u2013\; 2)$

$y-4=\frac{7}{3}x-\frac{14}{3}y\; \u2013\; 4\; =\; \backslash frac\{7\}\{3\}x\; \u2013\; \backslash frac\{14\}\{3\}$

$y=\frac{7}{3}x-\frac{14}{3}+\frac{12}{\mathrm{3}}$$y=\frac{7}{3}x-\frac{2}{\mathrm{3}}$

## Answer:

The equation of line $dd$d in slope-intercept form is:

$y=\frac{7}{3}x-\frac{2}{3}$