Quizzma Latest Questions

National Scan Inc sells radio frequency inventory tags

national scan inc sells radio frequency

National Scan, Inc., sells radio frequency inventory tags. Monthly sales for a seven-month period were as follows:

Month Sales (000 units)
Feb. 19
Mar. 18
Apr. 15
May 20
June 18
July 22
Aug. 20

Required: Forecast September sales volume using each of the following:

a. The naive approach
b. A five-month moving average
c. A weighted average using 0.60 for August, 0.30 for July, and 0.10 for June
d. Exponential smoothing with a smoothing constant equal to 0.20, assuming previous forecast of 19(000).




Related Questions

Leave an answer

Leave an answer

1 Answer

  1. a. The Naive Approach The naive approach assumes that the sales for September will be the same as the sales for August.

    Forecast for September=Sales in August=20\text{Forecast for September} = \text{Sales in August} = 20

    b. A Five-Month Moving Average To calculate a five-month moving average, we take the average of the sales of the last five months (April through August).

    Five Month Moving Average=Sales in Apr+Sales in May+Sales in June+Sales in July+Sales in Aug5\text{Five Month Moving Average} = \frac{\text{Sales in Apr} + \text{Sales in May} + \text{Sales in June} + \text{Sales in July} + \text{Sales in Aug}}{5}

    Five Month Moving Average=15+20+18+22+205=955=19\text{Five Month Moving Average} = \frac{15 + 20 + 18 + 22 + 20}{5} = \frac{95}{5} = 19

    c. A Weighted Average For the weighted average, we use the given weights: 0.60 for August, 0.30 for July, and 0.10 for June.

    Weighted Average=(0.60×Sales in Aug)+(0.30×Sales in July)+(0.10×Sales in June)\text{Weighted Average} = (0.60 \times \text{Sales in Aug}) + (0.30 \times \text{Sales in July}) + (0.10 \times \text{Sales in June})

    Weighted Average=(0.60×20)+(0.30×22)+(0.10×18)\text{Weighted Average} = (0.60 \times 20) + (0.30 \times 22) + (0.10 \times 18)

    Weighted Average=12+6.6+1.8=20.4\text{Weighted Average} = 12 + 6.6 + 1.8 = 20.4

    d. Exponential Smoothing For exponential smoothing with a smoothing constant of 0.20 and a previous forecast of 19(000):

    Forecast for September=α×(Sales in Aug)+(1α)×(Previous Forecast)\text{Forecast for September} = \alpha \times (\text{Sales in Aug}) + (1 – \alpha) \times (\text{Previous Forecast})Forecast for September=α×(Sales in Aug)+(1α)×(Previous Forecast)

    Forecast for September=0.20×20+0.80×19\text{Forecast for September} = 0.20 \times 20 + 0.80 \times 19

    Forecast for September=4+15.2=19.2\text{Forecast for September} = 4 + 15.2 = 19.2

    Summary of Forecasts:

    • Naive Approach: 20
    • Five-Month Moving Average: 19
    • Weighted Average: 20.4
    • Exponential Smoothing: 19.2